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ABSTRACT
We present a set of heuristics that significantly increase
the robustness of motion sensor-based activity recogni-
tion with respect to sensor displacement. In this paper
placement refers to the position within a single body
part (e.g, lower arm). We show how, within certain lim-
its and with modest quality degradation, motion sensor-
based activity recognition can be implemented in a dis-
placement tolerant way. We first describe the physical
principles that lead to our heuristic. We then evaluate
them first on a set of synthetic lower arm motions which
are well suited to illustrate the strengths and limits of
our approach, then on an extended modes of locomo-
tion problem (sensors on the upper leg) and finally on
a set of exercises performed on various gym machines
(sensors placed on the lower arm). In this example our
heuristic raises the displaced recognition rate from 24%
for a displaced accelerometer, which had 96% recogni-
tion when not displaced, to 82%.
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INTRODUCTION
Motion sensors, in particular accelerometers, are a com-
mon type of body worn sensors for activity recognition.
Following the original work by Randell [12], Van Laer-
hofen [15] and Mantyjarvi [8] there have been numer-
ous publication dealing with applications ranging from
dance [1] through sign language recognition [2] to track-
ing of every day activities [5, 14] to industrial mainte-
nance [11] and mental health related applications [17].
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An important question related to motion sensor based
activity recognition is sensor placement and displace-
ment. The vast majority of research in this area as-
sumes well defined, fixed sensor locations. This is par-
ticularly important for activity recognition related to
arm and hand motions.

Being able to drop the requirement for ’well defined
fixed position’ and build systems that can deal with
sensor displacement has two major advantages:

• Robustness. During long term deployment sensor
shifts cannot be avoided. Enabling the system to
continue working correctly despite sensor shift is a
significant improvement to robustness.

• Better usability and user acceptance. Today, many
mobile appliance are already equipped with sensors.
Sensor encapsulation into clothing or unobtrusive at-
tachment e.g, as ’buttons’ has been demonstrated
[13]. It is thus often taken for granted that users
can be easily equipped with sensors in every day sit-
uations. However, this does not imply that the user
can be expected to reliably and firmly fix the sensors
to narrowly defined on-body locations.

Problem Specification
The problem of on-body sensor placement can be de-
composed into three sub-problems: (1) ’body part’ place-
ment, (2) sensor orientation, and (3) exact position
within a body part,

’Body part’ placement.
A user can carry mobile appliances such as phones and
MP3 players in distinctly different body locations. The
devices can be in a front or side pocket, attached to a
belt, or in a holder on the upper or lower arm (e.g, dur-
ing exercise). Except for trivial recognition problems
(e.g, distinguishing walking from standing) a motion
based recognition system trained on one body part will
not work on another. However, we show that it is pos-
sible to reliably recognize the body part location of an
accelerometer [4]. At the same time, for most appli-
ances, there are a few body parts on which they can be
placed. Thus, a system can be trained for several body
locations and the appropriate version can be selected
on the basis of the recognized location.
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Sensor orientation.
It is well known that a static 3 axis accelerometer can
be used to detect its own orientation with respect to
gravity [10]. This means that with two simple calibra-
tion gestures we can determine the orientation of an
accelerometer on a body part. For an arm mounted
device, the user would have to hold the arm vertically
and horizontally for a second or two. For most other
body parts (upper body, leg) just standing still would
be sufficient. Mizell has also shown that averaging over
the signals on each axis over a reasonable time period
can produce a good estimate of the gravity-related com-
ponent [10]. During activities such as walking, where
the type of motion performed by different body parts
is constrained and well known, this could be used to
automatically detect the orientation.

In summary, while handling orientation would certainly
have to be carefully considered for each specific appli-
cation and body part, there are a number of promising
approaches that can be applied. As a consequence this
paper make the assumption that, in most cases, orien-
tation can be estimated with reasonable effort. Thus
we concentrate on the variations of the exact position
within the body part.

Exact position within a body part.
Most attachment methods leave a lot of room for place-
ment within a body part. Thus, for example, arm MP3
holders often used for jogging can be placed almost any-
where on the upper or lower arm. Integration of sensors
in clothing can ensure that sensors end up on a certain
body part. However, it cannot ensure a specific place-
ment on that body part. Even a tight fitting sleeve
can be rolled up or twisted, completely changing the
placement of any integrated sensors.

Unfortunately the within body placement issue cannot
be solved with simple calibration gestures. As explained
in the next section, the gravity component (=orienta-
tion) does not depend on the position within a body
part. Thus, a static calibration gesture is not sufficient.
Instead motions would have to be performed with differ-
ent, exactly defined speeds and trajectories. In general
we cannot expect the user to be able to perform such
exactly defined motions with sufficient reliability.

In summary, regarding the three sub-problems described
here, displacement within a body part is the most dif-
ficult to handle. Dealing with it is a so far unsolved
problem. It is this paper’s topic.

Paper Idea and Contributions
Although we did not discover an exact, always valid so-
lution, we present a set of heuristics that significantly
increase the robustness of motion sensor-based activity
recognition with respect to sensor displacement within
a single body part. We show how, within certain lim-
its and with modest quality degradation, our heuristics
allow motion sensor based activity recognition to be

implemented in a displacement tolerant (within body
part) way. Thus, within a single body part, we demon-
strate reliable recognition at locations different from
those on which the sensor was trained. The idea be-
hind our approach is based on three observations:

1. The signal of an body-worn accelerometer is the sum
of three components: acceleration due to rotation, ac-
celeration due to translation and acceleration due to
orientation with respect to gravity. Of the three only
the first one: acceleration due to rotation is sensitive
to sensor displacement within a single body part, as
we will explain in the next section exploring the phys-
ical considerations our work is based on.

2. It is possible to identify, with high probability, ac-
celerometer signal segments which are dominated by
rotation and thus are possibly ’contaminated’ with
displacement related noise.

3. Gyroscopes are insensitive to displacement within a
single body part but provide only information on ro-
tation ignoring translations and vertical orientation.

From the above observations, it follows that combin-
ing a gyroscope with an accelerometer and having the
accelerometer ignore all signal frames dominated by ro-
tation can remove placement sensitivity while retaining
most of the relevant information. In fact, sometimes
just an accelerometer ignoring the rotation ’contami-
nated’ frames can be enough for more displacement tol-
erant recognition. Additional measures that we propose
are the use of heavily low pass filtered acceleration sig-
nals as additional features and training the system on
two sensors corresponding to the ’worst possible dis-
placement’.

The main limits of the validity of our heuristics are (1)
a rigid body approximation of human body parts and
(2) the assumption that the bulk of the discriminative
information is not in signal segments that contain si-
multaneously performed fast rotations and significant
translations or changes in vertical orientation.

In the rest of the paper, we first described how our
heuristics can be derived from basic physical consider-
ations. Next we apply them to a set of ’synthetic’ ges-
tures that are well suited to demonstrate the strengths
and limits of our approach. Finally, we present an evalu-
ation on two real life recognition tasks. The first task is
an extended modes of locomotion problem using upper
leg mounted sensors. The second is a set of gym exer-
cises classified using sensors mounted on the lower arm.
On this set our heuristics improves recognition rates for
displaced sensors from 24% using a displaced accelerom-
eter, which had 96% recognition when not displaced, to
82%. On other examples the displaced recognition rate
raises from 63% to 90%.
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Figure 1: Rigid body translation 1a and rotation 1b

Related Work
To our knowledge there is no other work directly tar-
geting the problem of within body part displacement
for motion sensors. However, there has been some in-
directly related work. Van Laerhoven presents a study
to explore the trade-offs between single on-body sen-
sors with predefined, well-known placement and an in-
creasing quantity of sensors with decreasing information
quality (placement accuracy) [16]. Zinnen presents an
innovative way to use rest periods in accelerometer sig-
nals for detection of non-repetitive tasks which is based
on some of the principles presented here [18] . Lester
uses acceleration signatures to determine that a set of
devices is being carried by the same person [6]. There is
also some work on evaluating the suitability of different
on body locations for activity recognition [9]. A plat-
form with multiple sensors (in addition to mere motion
sensors) has been investigated with respect to on body
location invariance of activity recognition [7].

PHYSICAL CONSIDERATIONS

The Rigid Body Approximation
A common approximation used in modeling human body
motion is that of rigid segments connected by joints
which allow rotation around one (e.g. elbow) or more
(e.g. wrist) axis. In simple words such an approxima-
tion is equivalent to a ’stick figure’ representation used
in many animations. In exact terms, a rigid body is an
ideal solid body of finite size for which the relative po-
sition of any two given points remains constant in time

regardless of external forces exerted on it. Any motion
of a rigid body can be described as a combination of a
translation and a rotation.

Note, that although human joints have only rotational
degrees of freedom, a motion combining simultaneous
rotation at two different joints can have the effect of
a translation (e.g. shifting your lower arm through a
combined elbow and shoulder motion). It is also im-
portant to keep in mind that motions involving more
then one joint can lead to rotations around axis that
are not identical with any of the involved joints. Re-
garding arm motions, such axis are often close to the
torso, as we move our arms around the body.

Rigid Body Translation
During a translation every point in a rigid body is moved
by exactly the same vector with exactly the same speed
and acceleration. This is illustrated in figure 1a. We
have a rigid body with three arbitrary points p1, p2, p3.
The relative positions of those points are given by the
difference vectors ~d1,2, ~d1,3, ~d2,3. We assume that the
body is translated (=moved in a straight line) randomly
which results in p1, p2, p3 being moved by a correspond-
ing vectors ~x1, ~x2, ~x3. Per definition of a rigid body the
relative positions given by ~d1,2, ~d1,3, ~d2,3 must remain
unchanged. This is only possible if all the points are
moved by exactly the same vector:

~x1 = ~x2 = ~x3 (1)

This is valid independently of the translation distance
and the time it took. Thus, given a translatory motion,
at any point in time during this motion, all points of a
rigid body will have been moved by exactly the same
vector. This is also valid for infinitesimaly small time
intervals which implies that at any given point in time
the speed and with it the acceleration vectors will also
be the same for all points.
Rigid Body Rotation
In an analogous way it can be shown that angular veloc-
ity vector (and angular acceleration) are the same for all
points of a rigid body during a rotation around an arbi-
trary point in space. To illustrate this figure 1b shows
a rigid body in which three arbitrary points p1, p2, p3

and an arbitrary center of rotation r have been marked.
The vectors connecting each point to the center of ro-
tation are marked as ~r1, ~r2, ~r3, their relative angles as
α1,2, α1,3, α2,3. We consider a rotation around r which
results in p1, p2, p3 being rotated by θ1, θ2, θ3. Since per
definition of a rigid body after the rotation the rela-
tive positions of the three points given by ~d1,2, ~d1,3, ~d2,3

must be unchanged, the relative angles between vectors
connecting them to the center of rotation α1,2, α1,3, α2,3

must also be unchanged. This is only possible if all three
points have been rotated by the same angle:

θ1 = θ2 = θ3 (2)

As for translation considering infinitesimal time peri-
ods, the angular speed ω and acceleration must also be
the same for all three points.
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In summary, during a rotation of a rigid body around
an arbitrary point in space a gyroscope will produce
the same signal no matter where in the rigid body it is
placed. As will be explained later, this does not apply
to accelerometers since different points in a rigid body
in general experience a different, non zero acceleration
vector during a rotation.

Limits of the Rigid Body Approximation
Obviously ,the individual segments of the human body
are not really rigid bodies. Deformation of soft tissue,
skin motion and muscle activity associated with most
motions all lead to deviations. However, as will be
underscored by subsequent experiments (see the next
section ), for many sensor positions and motions it is
a valid approximation. The main deviations from the
rigid body approximation can be observed in the fol-
lowing situations.

1. During short, intensive acceleration and follow up vi-
brations soft ’wobbly’ parts (fat, soft muscles) are
deformed in a non rigid way. To deal with such devi-
ations the system might discard such vibrations.

2. When active muscles change shape. In particular
large muscles will cause motion signals incompatible
with the rigid body approximation. Thus, one should
for example avoid placing sensors directly on top of
a well developed biceps. Fortunately, such placement
is often not very comfortable and is likely to be au-
tomatically avoided by many users.

3. The lower arm rotation parallel to the axis of the
arm will affect sensors fixed to the wrist in a sig-
nificantly different way than sensors near the elbow.
The wrist sensor will rotate perfectly with the wrist,
whereas the elbow sensor will do so to a much lesser
degree. Gestures, for which such rotations are an im-
portant discriminative information are a problem for
our location invariant recognition, are illustrated by
our ’synthetic gestures’ evaluation in Section .

Acceleration during Rigid Body Rotation
During a pure translation gyroscopes will provide no
signal at all (there is per definition no rotational com-
ponent) while accelerometers will all give the same read-
ings no matter where they are placed.

As already said, in a rigid body all points are rotated
with the same angular velocity (ω) and experience the
same angular acceleration α. Thus, the gyroscope signal
is invariant with respect to sensor displacement.

To understand the effect of sensor displacement during
rotation on the accelerometer signal we need to revisit
some basic physics. During a rotation with the angular
velocity ω, the linear velocity v of each point of the
rigid body depends on the distance from the center of
rotation r. The further the point is from the center, the
larger the circle it needs to travel and, consequenctly,
the faster it needs to move. For the speed we have:

v = ωr (3)

The important thing to remember when looking at the
above equation is that the v designates the speed trav-
eled along a circle. This means that, although the scalar
value of the speed is constant (if ω remains constant), to
follow the circle each point of a rotating rigid body con-
stantly needs to change its direction1. Such a change of
direction requires an acceleration. The direction of the
acceleration is parallel to the radius of the circle. The
magnitude of this acceleration depends on the speed
(the faster a point travels the more force is required to
change direction) and with it on the distance for the
center. The magnitude of linear acceleration aω due to
constant angular velocity ω in a point at the distance r
from the center of rotation is given by:

aω = ω2r (4)

This gives us the first source of acceleration during a
rotation of a rigid body. It is often referred to as cen-
tripetal acceleration. The second potential source stems
from changes in the rotation speed. Since the linear
speed is proportional to the angular velocity and the
distance from the center (equation 3), it follows that
the linear acceleration aα associated with a change of
angular velocity is proportional to the angular acceler-
ation (α) and the distance from the center r:

aα = αr (5)

This component is called tangential acceleration.

Since the centripetal acceleration and the tangential ac-
celeration are perpendicular, not parallel, the scalar val-
ues given above can not be just added to get the total
magnitude of acceleration (which is the euclidian norm
of the acceleration vector). For the sake of simplicity
we will just deal with each of them separately 2 Another
simplification is to ignore the coriolis force which acts
on objects moving along the rotation axis. By moving
more than one joint at a time, it is certainly possible
to construct motions of human body parts for which
the coriolis acceleration plays a significant role. Yet,
motions where this is a relevant component are seldom
and will not be discussed it in this paper.

Consequences for Displaced Sensors
What does the above mean for the noise introduced by
displacing a sensor within a single, rigid body segment?
As already state a gyroscope signal is displacement in-
variant so it need not be considered further. For an ac-
celeration signal we need to differentiate between three
contributions: (1) the contribution caused by orienta-
tion with respect to gravity, (2) the contribution caused
by translations and (3) contribution caused by rotation.
As explained above, the first two are location invariant
and only the rotation component is location sensitive.

1The vector ~v is parallel to the tangent of the circle in each
point of the rotation
2Since the two are perpendicular their contribution to the
norm of the acceleration acombined is given by

√
ω4r2 + α2r2
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Displacement Noise in Rotation Related Acceleration
Given two different points of a rigid body: one with
a distance r1 from the center of rotation and the sec-
ond one with a distance of r2, we can compute the ac-
celeration components resulting from constant rotation
aω,1, aω,2 and from angular acceleration aα,1, aα,2 from
equations 4 and 5. Thus, the signal difference attributed
to sensor displacement can be computed as

aω,1 − aω,2 = ω2r1 − ω2r2 = ω2(r1 − r2) (6)
aα,1 − aα,2 = αr1 − αr2 = α(r1 − r2) (7)

How relevant this difference is to the recognition de-
pends not on its absolute magnitude, but on the signal
to noise ratio. This is the ratio of the original signal
(aω,1 or aα,1) to the difference caused by displacement
(aω,1 − aω,2 or aα,1 − aα,2. It can be computed from
equations 6 and 7:

aω,1 − aω,2

aω,1
=

ω2(r1 − r2)
ω2r1

=
r1 − r2

r1
(8)

aα,1 − aα,2

aα,1
=

α(r1 − r2)
αr1

=
r1 − r2

r1
(9)

The above is a very compelling result. It shows that
sensor displacement noise during rotational movement
depends only on the amount of displacement with re-
spect to the center of rotation). It is independent of the
actual angular velocity or angular acceleration.

Consequences for the Recognition
Previous paragraph dealt with the distortion of the ac-
celeration signal related to rotation, as the other com-
ponents are not affected by displacement. A naive idea
for the design of an displacement invariant recognition
system would be to try to ignore the rotation related
component of the acceleration signal and use only the
translation and vertical orientation related components.

Unfortunately in general 3, it is theoretically not possi-
ble to decompose an acceleration signal into the above
three components. Note that this remains true even
if we combine an acceleration sensor with a gyroscope.
The gyroscope will indicate the presence and speed of
rotation. However, as shown in equation to compute
the acceleration we need the distance from the center
of rotation, which we do not know.

Fortunately, although we do not know the exact radius
of the rotation, we know that it is bounded by the di-
mensions of the human body. While rotational motions
with very high radius can be constructed, for most hu-
man limb motions the center of rotation is somewhere
close to the torso. This means, that for a given rotation
speed, the acceleration is unlikely to exceed a certain
value. This in turn means that we can use the ratio of
rotation velocity measured by a gyroscope to the norm
3The general case assumes that there is no additional infor-
mation such as further sensors in different locations on the
same body part or appropriate high level knowledge about
the form and constraints of the motion

of the acceleration vector computed from the accelera-
tion sensor signal to determine if the acceleration signal
is rotation dominated or not. A high acceleration with
a relatively low measured angular velocity is a good
indication of the signal not being dominated by rota-
tion. On the other hand, high angular velocity with
low or moderate acceleration is an indication of a rota-
tion dominated motion.

The ratios of angular velocity to acceleration norm sig-
nifying the transition between rotation and translation
dominated signal depend on the typical rotation radius
and with it on the motions relevant to the specific recog-
nition task. They have to be learned during training.
We will show an example in the next paragraph.

The above means that while we can not separate the in-
dividual components of a given acceleration signal, it is
possible to estimate with reasonable probability which
signal frames are dominated by rotation and which are
not. We can then throw away the rotation dominated
frames, which are sensitive to displacement and use only
the ones dominated by translation and or vertical orien-
tation. In a sensor setup with a gyroscope we can try to
substitute the rotation for the thrown away acceleration
frames to retain rotation related information.

Another interesting consideration relates to the vertical
orientation component of the acceleration signal. Any
(non free falling) object on earth is subject to a con-
stant 9.81 m/s2 acceleration. This means that if the
norm of the acceleration signal is close to 9.81, then the
signal is likely to be dominated by the vertical orienta-
tion component. Clearly this also is a heuristic that is
not always valid. We can imagine a situation when an
object is free falling while experiencing a 9.81 m/s2 side
acceleration. However this is a rare occurrence, and the
above assertion is mostly valid (as will be underscored
by the experiments in the next section).

In Summary

Signal Level Summary
The results of the discussion presented in this section
can be summed up in the following points:

1. Gyroscopes are insensitive to sensor displacement within
a single rigid body segment. However they capture
only information about the rotational motion compo-
nent. They fail to capture information about trans-
lational motions and the vertical orientation (orien-
tation with respect to gravity).

2. The accelerometer signal is a sum of acceleration due
to rotation, acceleration due to translation and accel-
eration due to orientation with respect to gravity.

3. Acceleration due to translation and orientation with
respect to gravity are independent of sensor place-
ment within a rigid segment of the body.

4. Acceleration caused by rotational motion is location
sensitive. The ratio of the corresponding acceleration
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signal to the ’noise’ introduced by sensor displace-
ment is proportional to the ratio of to the amount of
displacement with respect to the center of rotation.

5. Using an acceleration (and possibly gyroscope) sensor
at one location only, it is not possible to separate the
three above mentioned acceleration components (ro-
tation caused, translation caused and gravity caused).
Thus, given an acceleration signal we are not able
to remove the rotation related component (which is
sensitive to displacement noise) and just use for clas-
sification the two other components (which are not
displacement sensitive).

6. However, given an acceleration and a gyroscope mea-
surement (from the same location taken at the same
time), we can estimate the contribution of each of the
three components to in the following way
• If the norm of the acceleration vector is close

to 9.81 (earth gravity) then the signal is most
probably dominated by the gravity component
(vertical orientation).
• If the norm of the acceleration vector is not close

to 9.81 then we look at the ratio of the norm
of acceleration minus 9.81 to the angular veloc-
ity and the angular acceleration. If the angular
velocity or angular acceleration dominate the ra-
tio, we know that the acceleration signal is domi-
nated by the rotation related components. Thus
the acceleration signal is strongly location de-
pendent. If the acceleration norm (minus 9.81)
dominates, then we know that the acceleration
signal is determined by translation related accel-
eration. In this case the acceleration is reason-
ably location independent.

If none of the above applies then the acceleration sig-
nal is an mixture of the three contributions with none
clearly dominating.

7. Low pass (pass frequency below Hz) filtered acceler-
ation signal is likely to be dominated by the gravity
component (see [3]).

Recommendation for recognition
For the design of on body activity recognition system
based on motion sensors that is as insensitive as possible
to sensor displacement, the following recommendations
can be made:

1. If the relevant activities are mostly determined by
rotational motions then placement invariance (within
a rigid segment of the body) can be achieved by using
gyroscopes instead of accelerometers.

2. For general activities the best location insensitive sen-
sor setup consists of an accelerometer and a gyro-
scope. The procedure can be summarized as follows

(a) If there is a significant gyroscope signal then we
use it as primary source of information

(b) To decide what to do with the accelerometer sig-
nal we look at the ratio of the total acceleration

(norm of the acceleration vector) to the total ro-
tation (norm of the angular velocity vector). The
accelerometer signal is used for classification if it
dominates both ratios. Otherwise it is ignored
(e.g acceleration input to the classifier set to 0).

The above procedure ’looses’ information in two cases.
First, if we have a motion that combines fast rota-
tion or large angular acceleration with a significant
amount of linear acceleration then the above rule
leads to the acceleration signal being ignored. This
is the price that we have to pay for location invari-
ance and there is nothing that can be done about it.
Second, in all cases where there is a large rotation
we loose information about vertical orientation. Us-
ing strongly low pass filtered acceleration signal as an
additional feature can, in most cases, retain at least
some of the vertical orientation information.

3. If only an accelerometer is available, then the best we
can do is to identify the segments of the signal that
are dominated by the gravity component and base the
recognition solely on the information about vertical
orientation. This may sound like loosing a lot of in-
formation, however previous work ( [3,18]) has shown
that many activities are to a large degree determined
by vertical orientation and changes thereof.

4. Independent of the recognition modality training the
system with two sensors as far displaced as possible
should encourage the classifier to focus on location
invariant parts of the signal.

EVALUATION ON SYNTHETIC MOTIONS
As initial evaluation we look at following 8 ’synthetic
motions” of the forearm:

a move up
b move straight out
c move from left to right
d close elbow joint
e move back (closing elbow joint) and turn wrist in one

motion
f turn around shoulder joint (screw-driving)
g turn large circles around shoulder
h turn smaller circles around elbow
The above motion set was put together to contain both
’easy’ and ’hard’ gestures and illustrate the strengths
and weaknesses of our approach. Thus, for example,
gestures e and d differ mostly in the turning of the wrist.
As has been discussed in the previous section, wrist
turning is especially displacement sensitive because of
deviations from the rigid body approximation. On the
other hand gestures a and b are likely to be well suited
for our approach. Note that many typical arm activities
are likely to contain motions from the above set.

The lower arm was chosen for two reasons. First, it
is a likely place to wear accelerometers (watch etc.).
Second, the forearm has the most degrees of freedom
and is the body part that is able to move fastest.
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Sensor Setup
We use XBus Master System together with 6 MTx mo-
tion sensors equipped with a 3-axis accelerometer, gy-
roscope and magnetic field sensors. As stated in the
introduction we focus on the location within a single
body part and ignore the question of sensor orienta-
tion. Thus, for all sensors, the x-axis orientation is the
same (pointing towards the ground if the arm is in rest).
The 6 sensor are placed as follows, (1) wrist outside, (2)
wrist inside, (3) middle of segment outside (y axis ori-
entation same as 1), (4) middle of segment on top of
arm (y axis orientation 90 degrees to 3 and 1), (5) close
to elbow inside and finally (6) close to elbow outside.

Signal Level Evaluation
Before we proceed to classification experiments we would
like to use the synthetic gestures data to validate the ba-
sic assumptions behind our approach. First we check if
leaving out signal segments with large angular velocity
to acceleration ratio does indeed reduce the displace-
ment related noise in the acceleration signal. To this
end in Figure 2 (left) we have plotted the difference in
signals between all sensors locations (in percent of the
sensor signal) against the acceleration norm divided by
angular velocity norm. In the rest of this paper we will
refer to the difference in signals between all sensors loca-
tions in percent as displacement noise. It can be clearly
seen that as long as the ratio is large (above 300) the
signal difference is very close to zero. This means that
displacement has nearly no effect on the signals. As the
ratio gets smaller and angular velocity starts to domi-
nate we begin to get a spread in the displacement noise
and for very small values there is significant noise. This
confirms our basic assumption.

Next, we check the assumption that frames where the
norm of the acceleration is close to 9.81 (gravity) are
likely to contain mostly orientation information and
thus no displacement related noise. This is illustrated
in Figure 2 (right). We can see that for accelerations
norm values within 1g from 9,81 the noise is negligible.

In summary, our assumptions hold well on the test data
set.

Recognition Experiments
Next we test if the validity of our assumptions will ac-
tually translate into recognition results. To this end
we first train the system on two locations. We use two
locations to be able to verify the claim that training
different locations helps the system learn the displace-
ment invariant features. We then test the system on
the locations that it was trained on as well as on three
additional locations. We do it with and without our
heuristics and compare the results.

Classification Method
Applying 1 sec. sliding window we extract 45 standard
pattern recognition features for each accelerometer and
gyroscope axis. Concerning sensor orientation, we use
normalized axis. For the evaluation of synthetic mo-

Modality Same Trained on 1 Trained on 2
Acceleration 100 % 33% 35%

Gyroscope 65% 43% 44%
Cut Off - 42% 47 %

Combined - 78% 85%

Table 1: Classification comparison for the synthetic
motions using a majority decision over the motions
based on a Knn classifier. Acceleration cut-off Norm
- 9.81 at larger than 0.8. Decision Boundry for combin-
ing accelerometer and gyro at 300.

a b c d e f g h ←
100 0 0 0 0 0 0 0 a

0 100 0 0 0 0 0 0 b
0 0 100 0 0 0 0 0 c
0 0 39.1 60.9 0 0 0 0 d
0 0 28.6 0 71.4 0 0 0 e
0 0 14.3 0 0 85.7 0 0 f
0 0 0 0 0 0 100 0 g
0 0 0 0 0 0 0 100 h

Table 2: Combined Accelerometer and Gyro trained
on 2 evaluated on 4 Sensors Accuracy 85 %, Decision
Boundary at 300.

tions this is extremely simple, as most of the sensors
have the same orientation anyway. For the later two
evaluations two calibration gestures are performed be-
tween recording the motions. This allows us to deter-
mine two normalized axes from the accelerometers due
to gravity. For all classifications we use the 2 normal-
ized axis (defined as x and y) for feature extraction and
only the magnitude of z, as we cannot determine its
direction using the acceleration.

Using the entropy measure also applied in the C4.5 de-
cision tree, we reduced our feature set from 40 to 8
(mean, variance, number of peaks, median peak height,
FFT center of mass, RMS, and frequency range power)
depending on the evaluation. Each feature is calculated
over the accelerometer and gyro data. The gyro data is
normalized the same way as the accelerometer.

We classified all examples using several frame-by-frame
classifiers( C4.5, KNN, BayesNets). As all of them show
more or less comparable results, we pick KNN for the
analysis for the remainder of the paper.

Classification Results
The results are summarized in table 1. Training the
classifiers on training data and test data from one dis-
tinct sensor we reach a classification rate of 100 % us-
ing both frame by frame classification and a majority
decision window over complete gestures. Testing the
trained system on locations that it was not trained on
reduces the recognition rate to 33% (on the accelerom-
eter only). Having trained the system not on one, but
on two widely displaced sensors improves the recogni-
tion rate to 35% only. Getting rid off frames with high
acceleration improves the recognition by about 10% but
the performance remains poor.
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Figure 2: Left: Difference in Percent plotted against the Norm Acceleration divided by, the Norm Gyro Vector:
Right Difference in Percent against acceleration norm - 9.81

The gyroscope performs significantly worse then the ac-
celerometer (65% on the same location) confirming our
analysis that it fails to capture all relevant information.
When tested on a different location it drops to 43%.
This is much less of a dramatic drop then for the ac-
celerometers but still significant. We expected the gyro
to be invariant with respect to displacement. The expla-
nation is the inclusion of gestures with wrist rotation,
which violates the rigid body assumption.

As expected best location invariant recognition results
from a combined accelerometer/gyro based approach
with all rotation dominated accelerometer frames be-
ing ignored. Trained on one sensor we reach 78%, on
two we come up to 85%.

In summary the initial experiment confirms that our
heuristic works well. Clearly 85% is far from perfect,
but for many applications it may be acceptable (as op-
posed to 33%). The result is particularly significant be-
cause we were working with large displacements. Small
displacements typical of ’slipping sensor’ are likely to
lead to a much less significant reduction in recognition
rate (we have shown, that the noise is proportional to
the displacement with respect to the center of rotation).

Another important thing to observe is the confusion
matrix that corresponds to the 85% recognition rate
(Table 2). It can be seen that out of the 8 gestures 5
achieve 100% recognition. The confusions involve ges-
tures with significant wrist rotations. We have identi-
fied such rotations as one of the cases where the rigid
body assumption underlying our heuristics is not valid.

MODES OF LOCOMOTION EXPERIMENTS
Towards more realistic evaluation we first look at an
extended modes of locomotion problem with the sensors
placed on the upper leg. We differentiate 8 activities (
table 3) on the left. Note that this is not the trivial
walking/standing/sitting modes of locomotion problem
but an experiment involving fairly subtle differences.

Locomotion Gym Exercises
i walking q lat machine
j running r pectorial
k running uphill s shoulder press
l biking t upper back
m rowing u arm extension
n stairs v arm curl
o skiing w pull down
p crosstrainer i chestpress

Table 3: Motions classified in the Locomotion and
Gym exercise scenarios

Figure 3: Random generated sensor placement and ori-
entation for the leg(front and back).

Experiment Setup
The subjects upper leg is equipped with 6 MTx Sensors
3 mounted on the front and two on the back as seen in
Figure 3. The placement is generated using a uniform
random distribution. We use bandages to attach the
sensors. Overall 8 locomotion classes (Table 3) were
recorded on fitness machines in a fitness center. One
test subject performed them each for 5 min.

Results
The results are summarized in table 5. Training and
classifying on the same acceleration sensor gives an ac-
curacy between 95 and 100 % using 10 fold cross valida-
tion or 66 % percentage split using a KNN and a major-
ity decision window. As expected a gyroscope performs
worse with 80 percent accuracy on the same location.
Note that the leg motions are very much rotation de-
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i j k l m n o p ←
100 0 0 0 0 0 0 0 i

0 76.9 23.1 0 0 0 0 0 j
0 20.3 79.7 0 0 0 0 0 k
0 0 0 90.4 9.6 0 0 0 l
0 0 0 0 100 0 0 0 m
0 0 0 0 0 91.1 8.9 0 n

8.7 0 0 0 0 0 91.3 0 o
6.1 0 0 0 0 0 0 93.9 p

Table 4: Joint Accleerometer and Gyro trained on 2
Sensors eval on 3 90 % decision boundary at 150

Modality Same Trained on 1 Trained on 2
Acceleration 100 % 63% 65%

Gyroscope 80% 72% 75%
Cut Off - 72% 76%

Combined - 87% 90%
Table 5: . Classification comparison for the locomo-
tion exercises using a majority decision over the motions
based on a Knn classifier. Acceleration cut-off Norm -
9.81 at larger than 0.6. Decision Boundry for combining
accelerometer and gyro at 150.

termined, so the performance reduction for the gyro is
less pronounced than for the synthetic gestures from the
previous paragraph.

Testing the same methods on a location on which they
have not been trained leads to a recognition rate of 63%
on the accelerometer and 72% on the gyro. As we have
less deviations from the rigid body assumption the drop
in gyro recognition rates is smaller than for the syn-
thetic arm gestures. That it exists at all, is probably
due to muscle motions (which are significant in some
locations on the upper leg). Training on two locations
brings minimal improvement. Restricting the accelera-
tion frames to those with a norm close to 9,81 improves
the recognition by 10% bringing it to 76% when trained
on two sensors. This relatively good recognition rate
(for a displaced, acceleration only system) is due to the
fact that most of the relevant motions are largely deter-
mined by changes in vertical orientation of the upper
leg.

The combined accelerometer gyro heuristic (throwing
away rotation related acceleration frames) brings the
recognition rate to 90% (trained on two sensors).

In summary, the modes of locomotion experiment also
confirms the validity of our methods. For many practi-
cal applications the 90% recognition rate might be suf-
ficient. Again one should keep in mind that we were
working with large displacements and that the noise is
proportional to the displacement.

GYM EXPERIMENTS WITH SENSORS ON FOREARM
The most challenging evaluation focuses on muscle strength
exercises conducted at fitness center machines.
Experiment Setup
The sensor placement and orientation are generated
random. There are 4 sensors at the forearm placed as
follows. The first around 10 cm away from the elbow
on the outside of the arm , x axis angle around 90◦

(a) (b)

Figure 4: Two pictures form the gym experiment data
recording

turned from an orientation that is parallel to the arm
pointing towards the ground, the second on the wrist,
with approximately 50◦, the third placed at the inside
of the arm around 8 cm away from the wrist with 0◦,
the forth placed also on the inside closer the the elbow
at 10◦. Again we picked 8 gym exercises to record, as
shown in Table 3. One test subject performed each
exercise 20 -25 times. Two runs were conducted.

The feature extraction follows the approach laid out
for snythetic motions and leads to the same features.
We use a 1 sec. sliding window. The recognition task is
much harder than the modes of locomotion problem and
the majority decision using the acceleration trained and
evaluated on the same location gives only an accuracy
of 85%. We have thus turned to a continuous HMM
based approach. On top of the features extracted as
mentioned above we apply another 15 sec. sliding win-
dow using 3 gaussians for each feature and 4 hidden
states. In case of combining the gyro and accelerom-
eter data, we picked the decision boundary at 300 for
the ratio. If it is below the boundary we use the gyro
features and set the accelerometer features all to zero.

Results
The results are summarized in table 6. When training
and testing on the same location (again 66 % percent-
age split) we reach 96 % on the acceleration signal alone.
Testing the acceleration only system on a location that
it was not trained with drops the recognition rate to 24
%. This was to be expected, as the classification prob-
lem is fairly complex. The rate can be raised to 31%
by training the system on 2 sensors, which is signifi-
cant but not really useful. A gyro trained and tested
on the same location gives an accuracy of 62% again
confirming that the gyro signal ’looses information’. 4

However, a significant improvement on displaced sensor
is achieved with our combined gyro/accelerometer ap-
proach. Trained on one sensor we reach 74% on two we
come up to 82%. The confusion matrix for this case is
shown in table 7.

Considering the confusion matrix of the combined ac-
celerometer and gyro case, the really significant miss-
4Since the problem is harder than the previous ones it was
not to be expected that dropping high acceleration frames
form the accelerometer classification will lead to reasonable
performance. Since the HMM evaluation was more time
intensive than the majority decision from previous examples
we did not take the time to evaluate this approach.
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Modality Same Trained on 1 Trained on 2
Acceleration 97% 24% 31%

Combined - 74% 82%
Table 6: Classification comparison for the gym exer-
cises using a continuous HMM. Decision Boundary for
combining accelerometer and gyro at 300.

q r s t u v w x ←
75.6 0 0 0 0 0 0 24.4 q

0 81.6 0 0 0 0 18.4 0 r
0 0 88.6 0 11.4 0 0 0 s
0 0 0 100 0 0 0 0 t
0 0 13.3 0 76.7 0 10.0 0 u
0 0 0 0 22.2 77.8 0 0 v

12.0 0 0 0 8.0 0 80 0 w
0 0 0 20.8 0 0 0 79.2 x

Table 7: Confusion Matrix Joint Accleerometer and
Gyro trained on 2 Sensors eval on 2 82 % decision
boundary at 300

classifications happen between movements that train
the complementary muscles, for example arm extension
and arm curl.

CONCLUSION AND FUTURE WORK
We have shown that a combination of an accelerom-
eter that ignores rotation dominated signal segments
and a gyroscope to compensate for the lost rotation
information is reasonably robust with respect to sen-
sor displacement within a single body part. Combined
with two sensor training to force the classifier to ignore
location artifacts we have shown that randomly, signif-
icantly displaced sensors can reach up to abut 90% of
the recognition rate of a non displaced sensor. Com-
pared to testing an unmodified classification system on
a different location we can improve the recognition rate
by over 300% !

Clearly coming to 90% of the non displaced sensor will
not be sufficient for all applications. Also the need to
add a gyroscope (which is more expensive than an ac-
celerometer) may not always be acceptable. However
we believe that our heuristics are a significant improve-
ment over the current state of the art and may be good
enough in many cases.

This paper has focused on large displacement that would
be typical of a user being given no instructions on where
to place the device. We also wanted to test the lim-
its of our ideas. Next we will investigate in more de-
tail smaller displacements that my be more typical of
shifted sensors. As described in the paper displacement
noise is proportional to displacement distance. Thus for
smaller displacements and with some further improve-
ments we believe that our methods could work satisfac-
torily even for accelerometer only systems. Under such
circumstances accelerometer/gyro system might be able
to mask out displacement noise entirely.
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Wearable sensing to annotate meeting recordings. Personal
and Ubiquitous Computing 7 (2003) 263–274

4. Kunze, K., Lukowicz, P., Junker, H., Troester, G.: Where
am i: Recognizing on-body positions of wearable sensors.
LOCA’04: International Workshop on Locationand Context-
. . . (2005)

5. Krause, A., Smailagic, A., Siewiorek, D.: Context-aware
mobile computing: Learning context-dependent personal
preferences from a wearable . . . . IEEE Transactions on
Mobile Computing (2006)

6. Lester, J., Hannaford, B., Boriello, G.: Are you with
me?–using accelerometers to determine if two devices are
carried by the same person. Pervasive Computing: Second
International Conference (2004)

7. Lester, J., Choudhury, T., Borriello, G.: A practical
approach to recognizing physical activities. Proceedings of
Pervasive (2006)

8. Mantyjarvi, J., Himberg, J., Seppanen, T., Center, N.R.:
Recognizing human motion with multiple acceleration
sensors. Systems, Man, and Cybernetics, 2001 IEEE
International Conference on 2 (2001)

9. Maurer, U., Smailagic, A., Siewiorek, D., Deisher, M.:
Activity recognition and monitoring using multiple sensors
on different body positions. Proceedings of the International
Workshop on Wearable and . . . (2006)

10. Mizell, D.: Using gravity to estimate accelerometer
orientation. Wearable Computers, 2003. Proceedings.
Seventh IEEE International Symposium on (2005) 252 – 253

11. Stiefmeier, T. Roggen, D. Troster, G. Ogris, G. Lukowicz,
P.: Wearable activity tracking in car manufacturing. To.
Appear, IEEE Pervasive Computing 7 (2008)

12. Randell, C., Muller, H.: Context awareness by analysing
accelerometer data. The Fourth International Symposium on
Wearable Computers 1 (2000) 175–176

13. Roggen, D., Bharatula, N., Stager, M., Lukowicz, P.,
Troster, G.: From sensors to miniature networked
sensorbuttons. Proceedings of the 3rd International
Conference on Networked Sensing Systems (INSS06) (2006)

14. Van Laerhoven, K., Aronsen, A.: Memorizing what you did
last week: Towards detailed actigraphy with a wearable
sensor. Proceedings of the 27th International Conference on
. . . (2007)

15. Van Laerhoven, K., Cakmakci, O.: What shall we teach our
pants? Wearable Computers, 2000. The Fourth International
Symposium on (2000) 77–83

16. Van Laerhoven, K., Gellersen, H.: Spine versus porcupine: a
study in distributed wearable activity recognition. (ISWC
2004)

17. Westeyn, T., Vadas, K., Bian, X., Starner, T., Abowd, G.:
Recognizing mimicked autistic self-stimulatory behaviors
using hmms. IEEE International Symposium on Wearable
Computers (2005) 164–169

18. Zinnen, A., van Laerhoven, K., Schiele, B.: Toward
recognition of short and non-repetitive activities from
wearable sensors. (European Conference on Ambient
Intelligence 2007)

29




