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Abstract

Opportunistic sensing allows to efficiently collect infor-
mation about the physical world and the persons behav-
ing in it. This may mainstream human context and activ-
ity recognition in wearable and pervasive computing by re-
moving requirements for a specific deployed infrastructure.
In this paper we introduce the newly started European re-
search project OPPORTUNITY within which we develop
mobile opportunistic activity and context recognition sys-
tems. We outline the project’s objective, the approach we
follow along opportunistic sensing, data processing and in-
terpretation, and autonomous adaptation and evolution to
environmental and user changes, and we outline prelimi-
nary results.

1 Introduction
Sensor networks allow unobtrusive sensing of the phys-

ical world and of persons in it [23]. Wearable and perva-
sive computing interprets sensed data in terms of context [9]
to provide smart assistance and context-aware ambient in-
telligence (AmI) environments. Complex human activities
and gestures [8], and location are important aspects of con-
text. Examples of activity- or context-aware applications
are found in the industrial domain [25], healthcare [26], or
interactive museums [13].

Context recognition consists of sensor signal acquisition,
and its classification into a set of output classes (context)
with machine learning techniques1[27]. The prevailing ap-
proach is application-specific sensor deployment. Thus the

1This step includes pre-processing, data segmentation into relevant sec-
tions, and feature extraction to reduce the dimensionality of the sections.

sensor signal to context mapping is known at design time.
For a widespread use of context-aware systems, application
specific deployment is not desireable. Users are at times
in highly instrumented environments and at other times in
places with little sensor infrastructure. Also, users carry a
more or less random set of sensor enabled devices, such as
mobile phones (e.g. with GPS and motion sensors), watches
(also including various sensors), headsets, or intelligent gar-
ments (e.g. shoe worn motion sensors are commercially
available). As the user leaves devices behind, picks up
new ones and changes his outfit, the sensing environment
changes. The on-body location of the sensors also varies,
with a mobile phone at times in a pocket, in a backpack,
or held in the hand. Finally sensors can fail and AmI envi-
ronments will undergo upgrades over time, as new sensor-
enabled devices (e.g. surveillance sensors, smart-floors) are
introduced. Thus, sensing is better seen as opportunistic.

We envision opportunistic activity recognition systems
that use opportunistic sensing in order to infer the user’s ac-
tivities and context. The key challenges are to gear oppor-
tunistic sensing towards activity and context recognition, to
interpret data without assuming a-priori known sensor sets,
and to a larger extent without assuming that sensor signal to
context mapping is known at design time.

We investigate this within the newly started Euro-
pean FP7 FET-Open research project OPPORTUNITY [1]
(February 2009-February 2011). In this paper we describe
the objectives and key approach of the project (section 2).
We detail a few initial results along opportunistic sensor
processing (section 3), and autonomous system evolution
(section 4).



2 Opportunistic activity/context recognition
OPPORTUNITY is a 3-year long EU FP7 project under

FET-Open funding with four partners collaborating to
...develop mobile systems to recognize human ac-
tivity and user context with dynamically varying
sensor setups, using goal oriented, cooperative
sensing. We refer to such systems as opportunis-
tic, since they take advantage of sensing modali-
ties that just happen to be available, rather than
forcing the user to deploy specific, application de-
pendent sensor systems.

Two major aspects are jointly investigated:
Opportunistic sensing: The system must take advan-

tage of the available sensing infrastructure, be that ambient
sensors or sensors included in on-body devices. The sen-
sors must be coordinated and must self-organize into goal
oriented sensor assemblies to achieve efficient acquisition
of information relevant to the activities or contexts to rec-
ognize.

Data interpretation: The sensor signals must be inter-
preted in terms of activites, gestures or location. In a static
system machine learning techniques learn the mapping be-
tween signal patterns and context at design time. This is not
possible with opportunistic sensing. Thus context recog-
nition must be immune to a number of variations such as
sensor placement and orientation. It must also tolerate, and
take advantage when possible, of changes in the sensing en-
vironment, such as when new sensors are discovered as part
of an infrastructure upgrade, or sensors are removed.

2.1 The OPPORTUNITY approach
On a high level, we envision OPPORTUNITY as an in-

terplay between:

1. Opportunistic sensing collecting information about the
physical world in which the user behaves.

2. The instantiation of a parameterized context recog-
nition chain based on the available sensors and their
characteristics.

3. System adaptation during operation to sensing envi-
ronment changes by reconfiguring the activity recog-
nition chain to achieve the desired recognition goal.

In figure 1 we outline the OPPORTUNITY system. It
comprises 6 core ideas and principles, detailed below, that
contribute to opportunistic context awareness.

2.1.1 Abstract recognition goal
The activity or context recognition goal is formulated in an
abstract manner (fig. 1 top). This is in contrast to current
systems where the recognition task is hard-coded in the sys-
tem. The goal formulation says what should be recognized,
but does not specify how. This allows the system to au-
tonomously configure itself to use the appropriate and avail-
able resources.

Figure 1. The overall OPPORTUNITY system

For example, in order to prevent dangerous manipula-
tions, a recognition goal may be to detect grasping manip-
ulative activities for anybody located in a warehouse with
dangerous goods, with highest accuracy, using any ambient
or wearable sensors. In a lifestyle application that moni-
tors physical exercise the recognition goal would relax the
constraints on accuracy and favour less obtrusive, mostly
wearable sensors.

The actual methodologies to formulate abstract recogni-
tion goals are investigated in the project with emphasis on
goal representations, and methods to convert the goal into a
sensing mission [12].

2.1.2 Opportunistic sensing
The recognition goal is translated into a coordinated sensing
mission (fig. 1 left). A number of approaches exist for co-
ordinated emergence of sensing networks [2, 15, 3, 10] and
autonomous composition [14, 24] and evolution [21, 5, 20]
of services. Autonomous self-organization according to
the sensing mission results in a goal-oriented sensing en-
semble providing the relevant information to the mobile
system from wearable or ambient sensors. As an example,
if the context to recognize are manipulative activities, the
information will come only from sensors capable of provid-
ing relevant information. This means all body-worn sen-
sors capable of sensing motion, such as inertial sensors, ul-
trasound or ultrawideband tracking from on-body tags, or
muscle activity sensors (EMG). Sensors such as temper-
ature or presence sensors would be excluded as they do
not provide relevant information to infer manipulative ges-
tures. Self-description and self-characterization underly
self-orgnaization. Sensor nodes must advertise their char-
acteristics, such as the physical quantity they sense (e.g.
sound, motion), with which parameters (e.g. accuracy, sam-
ple rate), exact location or at least gross location (e.g. body-
worn sensor v.s. ambient sensors). Some descriptive param-
eters must be inferred while the system operates by self-
characterization. For example, a cell-phone can be carried
on body, or left lying on a table. However it can self-



characterize its location by recognizing typical movement
patterns and advertise this information (see section 3).

The main research efforts address the components for an
infrastructure-free opportunistic sensing system, optimized
for human activity and context recognition. This includes
sensor markup, ensemble coordination, and self-description
and self-characterization methods [12].

2.1.3 Signal conditioning and feature abstraction
A typical context recognition chain consists of pre-
processing, feature extraction, feature classification, and de-
cision fusion (fig. 1 right). In order to allow variability in
the sensing infrastructure we investigate signal conditioning
and sensor independent features (see section 3 for illustra-
tive results).

Signal conditioning consists in re-defining commonly
used features in a way as to make them less sensitive to
variations. A simple example is the acceleration magnitude
captured by a 3-axis accelerometer that is independent of
the sensor orientation. Another example is to combine sen-
sors so that one compensates the effect of variations on the
other.

Sensor independent features. Different physical quan-
tities may provide related information about an activity. For
example, in order to classify hand motion into gestures the
hand trajectory is required. Several sensors can be used:
e.g. on-body inertial sensors, or visual tracking. Thus, hand
trajectory is a sensor independent feature that can be ob-
tained from different sources. This relaxes the constraints
on sensor availability for a desired recognition goal. We
envision this method in the form of a table that list for a
number of the most common recognition problems groups
of sensor types that can be combined to obtain the abstract
features, as well as the corresponding transformation algo-
rithm. Thus, according to the recognition problem and sen-
sor availability, this table allows to find which sensors to
combine to obtain the required abstract features.

2.1.4 Opportunistic machine learning methods
Signal conditioning and abstract features cannot filter all
variability. Thus, classifiers and decision fusion must en-
sure graceful degradation in case of variability, and have the
ability to dynamically exploit additional and/or improved
sources according to their information content. In OPPOR-
TUNITY we envision ensemble classifiers [22] with dy-
namic combination of classifiers at run-time [29] for fault-
tolerant and flexible sensor fusion. We will investigate the
benefits brought about by sensor self-description and self-
characterization. We present some initial results in dynamic
ensembles for opportunistic activity recognition in section
4.1.

2.1.5 Autonomous evolution and adaptation
The sensing infrastructure of AmI environments changes
over time as sensors fail or the infrastructure is upgraded
with new sensors. New sensors may provide information

relevant to some of the contexts. However the system needs
to make sense of this informatin (e.g. if the new sensor is a
sensor without or with incomplete self-description capabili-
ties). Slow, long-term changes in signal characteristics (e.g.
sensors affected by harsh environments) and user activity
patterns (e.g. due to change of habits, ageing) also occur.
This translates into changing mappings between sensor sig-
nals and context. These changes are not predictable, but an
autonomous opportunistic system must be immune to them
at least, or capable of taking advantages of these changes at
best.

In order to adapt to changing sensor numbers, we can
exploit the fact that when two sensors show correlated sig-
nals it is likely they are measuring the same physical quan-
tity at the same location. The longer the correlation pe-
riod, the higher is the likelihood [19]. This allows us to
devise autonomously and continuously, at run-time, a sub-
stitution table. It indicates the degree to which two sensors
are believed to be equivalent. It allows to replace a sen-
sor that fails by one or more other sensors that are consid-
ered as equivalent. It also allows to learn how to make use
of newly discovered sensors that are correlated with exist-
ing ones. Correlations can also be assessed in the feature
space, and transformations between signals or features can
be included. On a higher level, the existing system can also
provide estimated ground truth labels to control the trainin-
ing of classifiers operating on the signals provided by newly
discovered sensors (see section 4).

Slow changes in the mapping between sensor signals and
context translates by a drift of the points corresponding to
activity classes in the feature space (concept drift [28]). By
monitoring drift over time, the classifier parameters may be
adjusted accordingly. Adaptation can be done after a cali-
bration routine, or by taking advantage of many repetitive
occurences of context in daily life (see section 4).

2.1.6 Opportunistic user feedback
A user can report errors in the system’s context-aware be-
havior. An opportunistic system can take advantage of this
occasional feedback to collect error statistics and adjust its
recognition behavior (fig. 1 far right). A mobile device al-
lows interactive feedback. However, more promising is the
use of human generated signals related to cognitive states to
provide learning signals to artificial systems. In particular,
the detection of error-related EEG correlates (brain signal
patterns occurring when a system deviates from expected
behavior) is a promising approach to derive an endogenous
measure of system performance to guide system adaptation
[7, 11]. By combining this with semi-supervised learning
methods [6], classifiers can be efficiently trained from a
large amount of unlabelled data and a small proportion of
opportunistically labelled data. This may allow OPPOR-
TUNITY to turn into an autonomic system capable of self-
improvement.



2.2 Validation

We will apply opportunistic principles for simple prim-
itives of context and activity at first, such as presence,
location, modes of locomotion, and hand gestures. We
will then combine primitives into composite activities, such
as object manipulation or simple interactions between hu-
mans. By combining these building blocks into larger sce-
narios we will investigate the extent up to which these ap-
proaches scale in more realistic application scenarios, such
as indoor activity monitoring, or lifestyle monitoring. One
particular test-bed is the development of robust adaptive
Brain-Computer Interface (BCI) systems, as an example of
complex cognitive context recognition. EEG-based BCI is
highly sensitive to noise and electrode contact with skin.
Applying OPPORTUNITY methods to select appropriate
electrode channels according to the current situation will
tell us about the generalizability of the methods to other
problem domains.

3 Signal conditioning and feature abstraction
In ongoing work towards activity recognition from sen-

sor sets opportunistically discovered on-body (e.g. phones,
PDAs, watches, headsets), we investigated signal condition-
ing and sensor abstraction building blocks that can be com-
bined with other methods outlined in this paper. In partic-
ular, an opportunistic recognition system must address the
problem of placement and orientation independence. Thus
one has to be able to detect on-body location if the device
is worn on different body parts, one has to deal with dis-
placement issues, and if the device is not worn it is useful
to know its symbolic location.
3.1 On-body location

Wearable devices can be in a number of different loca-
tions (e.g. headset on the head or in one of many pockets).
Previously we have shown on a small data set how to recog-
nize a set of on-body locations using an accelerometer sig-
nal during walking and arbitraty activities [17]. We verifed
on-body location recognition accuracy on a dataset contain-
ing 9 hours from real life activity by three users ranging
from a 70 y.o. housewife to a 28 y.o. male student. The
maximum accuracy achieved for 6 min windows is 82 % for
5 locations (head, wrist, torso, front pocket, back pocket)
(fig. 2).
3.2 On-Segment Displacement

We presented a set of heuristics that significantly in-
crease the robustness of motion sensor-based activity recog-
nition with respect to sensor displacement within a single
body part (e.g. lower arm). Within certain limits and with
modest quality degradation, motion sensor based activity
recognition can be implemented in a displacement tolerant
way by taking into account physical principles of body me-
chanics [18]. After evaluation on a set of synthetic lower
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Figure 2. Confusion matrix for on-body loca-
tion detection using hidden Markov models.

Figure 3. Setup for displacement robust
recognition.

arm motions we extended this approach to modes of loco-
motion problem (sensors on the upper leg) and to a set of ex-
ercises performed on various gym machines (sensors placed
on the lower arm, see fig 3). In this example our heuristic
raises the displaced recognition rate from 24% for a dis-
placed accelerometer, which had 96% recognition when not
displaced, to 82%.
3.3 Symbolic Object Location

In [16] we describe a novel method for symbolic location
discovery of simple objects. It requires no infrastructure.
It relies on sensors typical in ambient intelligence environ-
ments and smart objects (acceleration, sound). Objects emit
short, narrow frequency “beeps”. Sound reflection in the en-
vironment is typical to the location and recognized by audio
fingerprinting (fig. 4). We assessed this method on specific
locations such as “on the couch”, “in the desk drawer”, “in-
ner jacket pocket”, “outer jacket pocket”, and on abstract
locations such as “in closed wood compartment”, “on open
iron surface”. We did a study with over 1200 measurements,
35 specific locations in 3 rooms, and 12 abstract location
classes. On the 16 locations in the largest room the recog-
nition rate is 96 %. On the whole 35 locations it is 81 %,
however the correct location is in the 3 top picks of the sys-
tem 94 % of the times.

4 Autonomous evolution and adaptation
Autonomous adaptation to changes in the sensing envi-

ronment is desired without (or at least with minimal) inter-



Figure 4. Audio fingerprint of a beeping ob-
ject placed on a carpet (left) or desk (right).

Figure 5. Left: performance according to en-
semble size. Right: dynamic ensemble adap-
tation at runtime (black=active sensors) al-
lows to reach a target performance despite
sensors failures. Time is from top to down.

vention. Thus the system evolves according to the sensing
situation and is capable of operating in open-ended envi-
ronments. In ongoing work we investigate: ensemble adap-
tation when sensors are lost; exploitation of newly discov-
ered sensors (e.g. for sensors insufficiently capable of self-
description or “legacy” sensors); and autonomous classifier
adaptation to cope with slow, long-term changes in sensor
and activity properties (concept drift) e.g. due to sensor
ageing or changes in the way users perform activities (e.g
proficiency increase, ageing).
4.1 Ensemble modelling and dynamic

adaptation
We have previously investigated empirical performance

models of ensemble classifiers collaborating to recognize
activities. Up to 60 sensors collaborated to recognize a set
of 10 manipulative gestures in an automotive environment
[29]. We derived empirical performance models suited for
online use and showed that classifier ensembles provide in-
trinsic robustness to noise and faults, and that performance
could be scaled in a simple case with the number of sen-
sors (fig. 5 left). This performance model allows dynamic
adaptation of the ensemble to the current sensor availability,
while guaranteeing a desired classification accuracy (fig. 5
right). Opportunistic communication aspects now need to
be factored in [4].
4.2 Exploitation of newly discovered sen-

sors
We investigate the use of the current system to detect

context occurences and use this as ground-truth to train a

Figure 6. Performance v.s. sensor turnover:
new sensors are trained by the system and
replace one sensor of the ensemble at each
iteration.

classifier operating on the signals of the new sensors. We
analyzed a worst-case on the same scenario as above. A
sensor is added to the system. It is trained by the current
sensors in the ensemble upon context occurences. It then
replaces one sensor in the ensemble to keep its size equal.
This is repeated with further additional sensors. Figure 6
shows the performance of the system according to the num-
ber of replaced sensors.The performance decreases rapidly
when the ensemble contains one sensor (30% of original
performance after 300 iterations). However with as few as
three sensors, the ensemble maintains high accuracy (98%
of original performance after 300 iterations). This approach
can be combined with occasional accurate user-generated
ground truth. Thus, we investigate the ratio of ground truth
labels that may balance this performance drop.
4.3 Autonomous classifier adaptation

Changing sensor signal to context mappings affect typi-
cal machine learning methods. We investigate autonomous
classifier adaptation by which, upon detection of context
occurence, the classifiers are re-trained to better model the
corresponding feature point. In the case of a Nearest Class
Center (NCC) classifier, the class center in the feature space
that corresponds to the newly recognized event is displaced
towards that point. In figure 7 we show the probability of
reaching a preset accuracy versus the accuracy of the clas-
sifier before the unsupervised adaptation process for a two
class problem. With only a slightly better initial true pos-
itive rate than chance (51%) the probability of improving
the classifier is already 87%. The classifiers that were suc-
cessfully adapted reached more than 95% accuracy on aver-
age. The adaptation dynamics of three different class cen-
ters from a NCC classifier to two dimensional Gaussian dis-
tributions are shown in figure 7. Class centers are attracted
by high density regions in the distributions.

5 Conclusion
Opportunistic sensing is a promising paradigm to collect

information on a large scale about events occuring in the
physical world, and thus particularly interesting for ambi-
ent intelligence environment and wearable systems where
the nature and availability of sensor-enabled devices often



(a) State-space dynamics (b) Adaptation success probability

Figure 7. Classifier adaptation
cannot be controlled. In these application domains sensor
information must be interpreted in terms of human context
or activity. In this paper we outlined the newly started EU
project OPPORTUNITY within which we develop meth-
ods for opportunistic human activity and context recogni-
tion. We presented results of a few methods we investigate
to take advantage of opportunistic sensing and bring it to-
wards opportunistic recognition of human contexts and ac-
tivities. These results outline our initial investigations but
do not represent the final OPPORTUNITY system as the
project just recently started. We invite all readers to access
our website [1], where we will publish project updates.
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